
Ph2a Online @ Caltech Homework-8
Vibrations and Waves

Reading: Finish reading Chapter 8 of the textbook, on dispersion.

——————————————————————————————————————————

34. Some quick questions

(a) We derived in class the diffraction pattern in the far field region for a circular aperture and for
small angles θ from the center of the aperture:

|E‖ ∝
∣∣∣∣a2r · J1(ka sin θ)

ka sin θ

∣∣∣∣ , (1)

where E is the electric field, a is the radius of the aperture, and J1 is the Bessel function (of the
first “kind”) of order 1. The first few zeros of J1 are 3.83, 7.02, 10.2, 13.3,. . . , as may be found
tabulated in many places.

In class, we obtained the angle of the first dark ring to be θ1 = 1.22λ/2a. What is the angle of
the second dark ring?

(b) You have a small green incandescent lamp with diameterD and wish to experiment with diffraction
patterns on a slit of width d. How far away from the slit should you put your lamp?

35. A physical model for a dielectric is that electrons in the medium are harmonically bound to the
molecules (simple harmonic oscillator at work!!). In the presence of an external electric field, this
results in a forced oscillator equation for the electron:

m(ẍ + γẋ + ω2
0x) = −eE(x, t). (2)

If the driving force (from the electric field E(x, t) in the external wave) is harmonic with frequency ω,
we get motion following our familiar resonance formula:

x = −eE
m

1

ω2
0 − ω2 − iωγ

. (3)

When multiplied by the charge −e, this gives a time-dependent induced dipole moment. The electric
permittivity is created by this dipole moment (we are assuming that magnetic effects are negligible in
this discussion).

Things are complicated a little because there may be several (Z, say) electrons per molecule, with
different resonant frequencies. So, the model for the permittivity is

ε(ω) = ε0 +
Ne2

m

∑
n

fn
ω2
n − ω2 − iωγn

, (4)

where N is the number of molecules per unit volume and
∑

n fn = Z. Also, ε0 is the “vacuum
permittivity” or “electric constant”.

Consider high frequencies, compared with the natural oscillator frequencies. What is the dispersion
relation for waves in the dielectric in this limit?

36. We looked at the quantum mechanics of a free particle according to the Schrödinger equation in problem
23. Without putting it in those terms, we derived the dispersion relation and computed the phase and
group velocities. The quantum mechanical wave relations for the momentum and energy, p = h̄k and
E = h̄ω, are thought to hold relativistically, although the Schrödinger equation does not. We already
have a relativistic wave equation for light that we derived from Maxwell’s equations. This was not a
quantum mechanical result, but we could put it in such terms and describe photons.

Let us here consider the relativistic quantum mechanics of a free (and spinless) particle with mass m.
The appropriate wave equation is called the Klein Gordon equation, but we don’t need to actually
introduce it here (indeed you could write it down from our discussion of the dispersion relation here).
The square of the energy of a free particle of mass m is:

E2 = p2c2 +m2c4, (5)

where c is the speed of light. Note that the energy includes the rest mass of the particle.
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(a) What is the dispersion relation for a quatum mechanical relativistic free particle of mass m? What
are the phase and group velocities? Can they be larger than c? If so, is this a problem?

(b) What happens to the phase and group velocities as the momentum gets very large (i.e., in the
ultra-relativistc limit)?

(c) What happens to the phase and group velocities in the non-relativistic limit? Do they converge
on the results in problem 23? If not, why not?

—————————————————————————————————————–
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