
Ph2a Online @ Caltech Homework-6 Solutions
Vibrations and Waves

——————————————————————————————————————————

Problem 24 [10 points]

24.a - 3 points

Let’s assume the flute and clarinet are the same length, l. Let’s say we have a sound wave ypx, tq. The
flute has holes on both ends, which means it has open boundary conditions on each end, or that dy

dx “ 0 at
x “ 0 and x “ l. The clarinet has a hole at the bottom but a mouthpiece at the top, so it has a closed
boundary at the top and an open one at the bottom. Then yp0, tq “ 0 and dy

dx “ 0 at x “ l. Now assume
a wave solution ypx, tq9A cospkxq ` B sinpkxq, where we’ve just dropped the time component since it’s not
relevant for the problem. For the flute, we require ´kA sinpkxq ` kB cospkxq “ 0 for x “ 0 and x “ l. Then
B “ 0 and sinpklq “ 0 as a result. That means k “ nπ

l for some integer n. For the clarinet, we require
´kA sinpkxq ` kB cospkxq “ 0 at x “ l, but A cospkxq ` B sinpkxq “ 0 at x “ 0. Then from the second

equation, we have A “ 0, and from the first, we have cospklq “ 0. Then k “ p2n´1qπ
2l . for some integer n.

Note that we have chosen the form of the requirements for k so that the ground state corresponds to n “ 1.
Since for plane waves, the dispersion relation is k9ω, then we have

ωflute
ωclarinet

“ nπ
l ˚

2l
p2n´1qπ “

2n
2n´1 . If we

consider n “ 1, we find that the ratio is 2.
Comments: Many many people only considered the ground state. Only looking at the ground state is a

good way to get a feel for the problem, but in this case it gives a poor understanding of the physics going
on. In fact, as we go to higher harmonics, the two instruments get closer and closer together.

• 1/3 for only considering the ground state

• 2/3 for an incorrect treatment of higher modes

24.b - 4 points

If the intensity of light on the detector is zero in a Michelson interferometer, then we must have tuned
the length of the legs such that there is perfect destructive interference when the beams recombine at the
beamsplitter. Then there is no light heading from the beamsplitter to the detector. The question we ask
ourselves here is: if there was energy being carried through both legs of the interferometer, where did it go?
What we have to remember is that the beamsplitter is semi-reflective; that’s how the beam gets split in the
first place. That means that when the beams in each leg return to the beamsplitter for recombination, only
half of each beam gets sent in the direction of the detector. The other half gets sent back to the source,
in the exact reverse of the process from which it came! So in reality, we actually have two beams coming
out of the interferometer: one going to the detector and one going to the source. If we consider the beam
heading to the source, half of that beam will have been reflected twice by the beamsplitter and half will have
been transmitted twice, and that difference allows them to pick up a relative phase between them, and it
turns out this phase is exactly π. Then the phase difference between the combined beams heading to the
detector is opposite that of the combined beams heading to the source. If the detector sees total destructive
interference, the source will see total constructive interference, and this is where all the energy goes in our
case.

Comments: A lot of people only said there is destructive interference. A good physicist will always follow
up with a question about where the energy goes in that case.

• 2/4 for explaining destructive interference well, but not considering energy

• 3/4 for mentioning energy conservation but not explaining it in a complete way

24.c - 3 points

The drumhead (say it has side length 2a with the origin in the lower left) has boundary conditions that
zpx, y, tq “ 0 all around the boundary. Then we can look in the x direction and say the normal modes go as
sinpnxπx2a q and the y normal modes go as sinp

nyπy
2a q (check to see that these will always obey the boundary

conditions!). The lowest nontrivial mode, then, is when nx “ ny “ 1. If we define square symmetry to be
that the x and y axes are treated equivalently, then we just require nx “ ny for square symmetry to occur.
Then it is clear the next mode with symmetry is nx “ ny “ 2, which has nodes at x “ a and y “ a. The
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lowest modes without nx “ ny are simply nx “ 1, ny “ 2 and nx “ 2, ny “ 1. In the first case, there is a
node at y “ a, and in the second case, there is a node at x “ a. The drawings are attached below.

Comments: Most people did very well on this problem. I also gave credit if you said the nx “ ny “ 2
mode was not square symmetric, and instead put the nx “ ny “ 3 mode. I did not give credit for saying
the nx “ 2, ny “ 1 mode was square symmetric, unless there was an excellent description of why this had
square symmetry.

• -1 for each incorrect plot, unless one incorrect plot caused another to be incorrect

• 1 point per plot, in general

Problem 25 [10 points]

25.a - 5 points

The key to finding the boundary conditions is to note that sound waves propagate as longitudinal displace-
ments of air molecules, which we’ll write as dpxq. At x “ 0, our column of air is bounded below by water,
which acts as a closed boundary because it is incompressible. The air molecules directly adjacent to the sur-
face of the water cannot oscillate longitudinally because the water blocks their path. Then we have dp0q “ 0,
which is a displacement node. Since the air molecules can’t move, but the air molecules above can move, the
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pressure at the bottom can oscillate freely, so there is a pressure antinode at this point. At x “ L, we have
maximal displacement because the force behind the displacement comes from the source. Thus we have a
displacement antinode here, which implies d1pLq “ 0. We can also discover this result because this end is
open and thus the pressure is constant at this end, since it must match atmospheric pressure. The constant
pressure means we have a pressure node, which corresponds to the displacement antinode.

Comments: Almost everyone put down good boundary conditions. However, many people said something
like ”open at the top, closed at the bottom.” I was looking for more specificity here, especially since it was
not clear if a given person was considering displacement or pressure as their variable (both are wavelike). As
such, I did not give full credit unless there were clear equations written. I would also like to warn against a
boundary condition like ypx “ L, tq “ Amax, where Amax is the maximum amplitude. These are waves, so
there is oscillation in time. Then Amax actually depends on time. It is better to write something like dy

dx “ 0
at x “ L, because this is always true.

• 3/5 for no equations and no clear definition of the variable, but correct boundary conditions

• 3/5 for incorrect boundary conditions with good justification

• 4/5 for correct boundary conditions stated in words without accompanying equations

25.b - 5 points

Let’s write a generic wave in x to solve for the first two normal modes. Let dpx, tq “ pA cospkxq `
B sinpkxqq sinpωt ` φq. Now let’s apply our boundary conditions: dp0, tq “ 0 and d

dxdpL, tq “ 0 for all
t. From the first we have A sinpωt ` φq “ 0 which only holds for all t if A “ 0. From the second we have
kB cospkLq sinpωt ` φq “ 0 which only holds for all t if cospkLq “ 0. This means we need kL “ π

2 p2n ` 1q
for n a nonnegative integer, so k “ π

2L p2n ` 1q. Then the lowest two normal modes are k1 “
π
2L and

k2 “
3π
2L . We know k “ λ´1 and λ “ 2πv

ω , so k “ 1
2πvω. Then ω1

ω2
“ k1

k2
“

π
2L
3π
2L

“ 1
3 . A plot of the

two normal modes which helps visualize this result is given below, and more information can be found at
https://www.acs.psu.edu/drussell/demos/standingwaves/standingwaves.html.

Comments: People did very well on this problem.

• 4/5 for providing a ratio of wavelengths without explicitly stating that λ9ω´1.

Problem 26 [5 points]

If we follow the derivation on pages 147-8 in the book, we can find the equation for the energy of a normal
mode of a string clamped down on both ends, such that its boundary conditions are no oscillation on either
end. That system is identical to ours because our weight effectively allows for no movement on the ends
of the string. The equation we get is En “

1
4µLA

2
nω

2
n, where L is the length of the string, µ is the mass

density, An is the amplitude of the nth normal mode, and ωn is the natural frequency of the nth mode,
which we know is given by nπv

L , as that is also given in the book. We are not explicitly given the velocity of
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waves in the system, but we can find it using equation 5.32 from the book, which shows v “
b

T
µ , where T is

the tension. Substituting these results in yields En “
µLA2

nn
2π2T

4µL2 “
A2
nn

2π2T
4L . We are given in the problem

that L “ 2m, An “ 5cm, n “ 10, and we can calculate T “ mg “ 300g ˚ 9.8ms´2 “ 2.94N because the
tension is constant throughout the string and must cancel the force of gravity on the weight. Then we find

E10 “
p.05mq2˚100˚π2

˚2.94N
4˚2m “ 0.9J .

Problem 27 [10 points]

27.a - 7 points

First, we must consider the boundary conditions of the system. At each of the edges, u(x, y, t) = 0 because
the edges of the drum are fixed. If we define our origin of the coordinates x, y at the bottom left of the
drum, then this gives us the following boundary conditions where x and y are confined to be within 0 and
2a:

up0, y, tq “ 0;upx, 0, tq “ 0;up2a, y, tq “ 0, upx, 2a, tq “ 0 (1)

We know that the general 2D wave equation is the following:

B2u

Bt2
“ v2

´

B2u

Bx2
`
B2u

By2

¯

(2)

From here, there are two good ways to solve this problem: First, we can use separation of variables to say
that our solution must take the following form:

upx, y, tq “ XpxqY pyqT ptq (3)

Plugging this into the wave equation and then dividing by our solution, we get:

X2pxqY pyqT ptq `XpxqY 2pyqT ptq “
1

v2
XpxqY pyqT 2ptq

Ñ
X2pxq

Xpxq
`
Y 2pyq

Y pyq
“

1

v2
T 2ptq

T ptq
(4)

Let
X2pxq

Xpxq
`
Y 2pyq

Y pyq
“ ´λ2 Ñ T 2pxq ` λ2v2T “ 0 (5)

so that it takes the form of a harmonic oscillator. The negative sign is specifically chosen so that our
boundary conditions will hold - we must have a solution that dies away, not one with expontential growth.
Given that w “ λv, we know our solution to this differential equation must be:

T ptq “ A coswt`B sinwt “ A cosλvt`B sinλvt (6)

Continuing to X, we let
X2pxq

Xpxq
“ ´λ2 ´

Y 2pyq

Y pyq
“ ´µ2 (7)

and also:
Y 2pyq

Y pyq
“ ´λ2 ´

X2pxq

Xpxq
“ ´α2 (8)

Since both of these also harmonic oscillator differential equations, we know that the solutions are the follow-
ing:

Xpxq “ C cosµx`D sinµx (9)

Y pyq “ E cosαy ` F sinαy (10)

Using our boundary conditions, that X(0) = X(2a) = Y(0) = Y(2a) = 0, we see that since cosµx “
cosαx “ 1 at x = y = 0, so for those boundary conditions to hold, C = E = 0. Then, we must look at when
x = y = 2a. For the sine function to equal zero, the argument must be 2πk where k is an integer. Thus, we
have that µ2a “ nπ and α2a “ mπ We now have that:

Xpxq “ D sin p
nπ

2a
xq (11)

Y pyq “ F sin p
mπ

2a
yq (12)
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We thus have that our normal modes must equal:

upx, y, tq “ sin p
nπ

2a
xq sin p

mπ

2a
yqpGn,m coswn,mt`Hn,m sinwn,mtq (13)

where
wn,m “ v

a

α2 ` µ2 “
vπ

2a

a

n2 `m2;Gn,m “ DFA;Hn,m “ DFB (14)

Another way to solve this uses complex exponentials and simplifies from there: A general form solution
to the wave equation is:

upx, y, tq “ Aeipwt`φ`
~k~xq `Beipwt`φ´

~k~xq (15)

Let us now apply our boundary conditions to this general equation. First we use u(0, 0, t) = 0. This tells
us that for the two terms to cancel out for all t and y, A = -B:

up0, y, tq “ Aeipwt`φq `Beipwt`φq “ Aeipwt`φq ´Aeipwt`φq “ 0 (16)

We next apply the condition that u(2a, 0, t) = 0, which gives us the conclusion that kym “
mπ
2a where m =

1, 2,... because the sine term will always equal 0 at an integer multiple of π.

up2a, 0, tq “ Aeipwt`φ`kymyq ´Aeipwt`φ´kymyq “ 2iAeipwt`φq sin kymy “ 0 (17)

Similarly for y, u(0, 2a, t) = 0 gives us that kxn “
mπ
2a where n = 1, 2,...

up2a, 0, tq “ Aeipwt`φ`kxnxq ´Aeipwt`φ´kxnxq “ 2iAeipwt`φq sin kxnx “ 0 (18)

This gives us that for a specific value of n, m, the normal mode is the following where the 2i have been
absorbed into An.m. Since An,m is determined by initial conditions, we have this freedom.

un,mpx, y, tq “ An,me
ipwn,mt`φn,mq sin pkxnxq sin pkymyq “ 0 (19)

However, this is not yet physical because it has an imaginary part. Thus, we must take the real part, giving
us a single normal mode:

un,mpx, y, tq “ An,m cos pwn,mt` φn,mq sin p
nπ

2a
xq sin p

mπ

2a
yq (20)

We must now plug this equation back into our wave equation to get our characteristic equation for the
system:

B2u

Bt2
“ v2

´

B2u

Bx2
`
B2u

By2

¯

(21)

Ñ ´w2A cos pwt` φq sin pkxxq sin pkyyq (22)

“ v2
`

´ k2xA cos pwt` φq sin pkxxq sin pkyyq ´ k
2
yA cos pwt` φq sin pkxxq sin pkyyq

˘

(23)

“ w2
n,m “ v2pk2x ` k

2
yq Ñ wn,m “

vπ

2a

a

n2 `m2 (24)

27.b - 3 points

The general solution is simply summing over all possible values of n and m with an arbitrary constant (An,m)
multiplied by each term and where wn,m “

vπ
2a

?
n2 `m2:

upx, y, tq “
8
ÿ

n,m“0

ˆ

An,m cos pwn,mt` φn,mq sin p
nπ

2a
xq sin p

mπ

2a
yq

˙

(25)

Problem 28 [15 points]

28.a 4 points

Since our ψpxq is a wavefunction, it is describing the probability of the wave existing at a point x. However,
an infinite potential acts as a insurmountable wall for the wavefunction. Thus, our boundary conditions
must be that ψpxq = 0 at x = 0, L, because the probability of finding the particle there must be 0.
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28.b 7 points

Within the nucleus where the potential energy is zero, we can use the solutions for a free particle. We
remember that the general free particle solution is:

ψpx, tq “ Aeipwt`kxq `Beipwt´kxq “ eiwtpAeikx `Be´ikxq (26)

However, since we are only interested in a time independent solution, we can ignore the eiwt multiplied by
both terms, giving us the following solution:

ψpxq “ Aeikx `Be´ikx (27)

We must now solve for our free parameters A, B, and k using our boundary conditions. First, we use that
ψ(x=0) = 0. As we can see below, for this to hold, A = -B:

ψp0q “ Aeikp0q `Be´ikp0q “ A`B “ 0 (28)

We then use our other boundary condition that ψ(L) = 0. As we can see below, this time for the terms to
vanish, kL = nπ where n = 1, 2,... since Sin(x) vanishes when x = nπ.

ψpLq “ ApeikL ´ e´ikLq “ 2iA sin kL “ 0 (29)

We now know that our solution takes the form

ψpxq “ 2iA sin
nπ

L
x (30)

We can now plug this solution back into the Schrodinger equation in order to solve for what E is:

´
h̄2

2m
∇2ψpxq ` V pxqψpxq “ Eψpxq (31)

Since we are only looking at the energy inside the nucleus, V(x) = 0, giving us:

´
h̄2

2m
∇2ψpxq “ Eψpxq (32)

Plugging in our ψ, we get:

´
h̄2

2m
p´2ik2 sin kxq “ E2i sin kxÑ

h̄2

2m
k2 “ E (33)

Thus, plugging in our value for k, we get that the energy levels are:

E “
h̄2

2m
k2 “

h̄2

2m
p
nπ

L
q2 “

h̄2n2π2

2mL2
(34)

where n = 1, 2, 3...

28.c 4 points

We are given that L = 1 fm = 1 ¨ 10´15 m and m = 1 GeV/c2= 1¨103 Mev/c2. Since h̄ = 6.582¨10´25 MeV¨s
and c = 2.998¨108 m/s, then we get that the lowest energy level (n = 1) in MeV is

E “
h̄2n2π2

2mL2
“ 2 ˚ 102MeV (35)

—————————————————————————————————————–
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