
Ph2a Online @ Caltech Homework-8 Solutions
Vibrations and Waves

——————————————————————————————————————————

Problem 34 (5 points)

a. 3 points

We have already found the first dark ring to be θ1 = 1.22λ
2a . We are given ||E|| ∝ |a

2

r ∗
J1(ka sin θ)
ka sin θ |. The

dark rings occur when there is no E-field because then there is no light. We want the second-smallest

zero of the E-field, since we already found the first. It’s clear that ka sin θ does not blow up, and a2

r is a
constant, so we require J1(ka sin θ) = 0. The second zero is given in the problem to occur at 7.02, so then
we have 7.02 = ka sin θ2. We also know the first zero occurs at 3.83, so 3.83 = ka sin θ1, θ1 = 1.22λ

2a , so

3.83 = ka sin
(
1.22λ
2a

)
. Then ka = 3.83

sin( 1.22λ
2a )

, so sin θ2 =
7.02 sin( 1.22λ

2a )
3.83 = 1.83 sin

(
1.22λ
2a

)
. For small angles,

sin θ ≈ θ, so we have θ2 ≈ 1.83 1.22λ
2a = 2.23λ

2a .

b. 2 points

There is a good discussion of this in the book on pages 168-169. We require the light to be sufficiently far
away from the slit such that the light appears as a coherent source, so that the phase difference from light
on the different parts of the slit is small compared to the wavelength. The condition is given on page 169,
by relation 7.18: w << 2lλ

a , where here w is the width of the source, l is the distance from the source to

the slit, and a is the width of the slit. Converting to our variables, we then get D << 2lλ
d , or, rearranged,

l >> Dd
2λ . For green light, λ ≈ 530nm, so l >> 1.89 ∗ 106m−1 ∗Dd.

Problem 35 (10 points)

We are given that

ε(ω) = ε0 +
Ne2

m

∑
n

fn
ω2
n − ω2 − iωγn

. (1)

For large ω, we can approximate
ω2
n − ω2 − iωγn ≈ −ω2, (2)

so

ε(ω) ≈ ε0 −
Ne2

mω2

∑
n

fn = ε0 −
Ne2Z

mω2
. (3)

We now recall that for electromagnetic waves propagating through a dielectric medium,

v =
ω

k
=

1
√
εµ
, (4)

so

ω =
k
√
εµ

=
k√

µ(ε0 − Ne2Z
mω2 )

. (5)

Rearranging and assuming that µ = µ0, we find that

ω2µ0ε0 − µ0
Ne2Z

m
= k2 =⇒ ω2 =

1

µ0ε0
(k2 + µ0

Ne2Z

m
). (6)

We can write this in a neater form by distributing and using c2 = 1
µ0ε0

:

ω2 = c2k2 +
Ne2Z

mε0
. (7)

A note for the curious reader: the quantity ωp ≡
√

Ne2Z
mε0

actually gives the frequency of oscillation of cold

electrons in a plasma (a gas of positive ions separated from lone electrons); this oscillation does not require
an externally applied electric field.
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Problem 36 (15 points)

a. 5 points

We are given that in the relativistic limit, the square of the energy of a free particle of mass is:

E2 = p2c2 +m2c4 (8)

We are also given that while many non-relativistic equalities do not hold in this limit, the quantum mechanical
relationships p = ~k and E = ~ω do hold. Our goal in this problem is to find the dispersion relationship
for a quantum mechanical, relativistic free particle. In other words, we need a relationship between ω and
k and the other parameters in the problem. We can find this by plugging in the given quantum mechanical
relationships into the expression for energy, giving us:

E2 = p2c2 +m2c4 → (~ω)2 = (~k)2c2 +m2c4 → ω2 = k2c2 +
m2c4

~2
(9)

Solving for ω, we get:

ω = c

√
k2 +

m2c2

~2
(10)

From this, we can easily find the phase and group velocities using the following relationships:

vp =
ω

k
=
c

k

√
k2 +

m2c2

~2
(11)

and

vg =
dω

dk
=

ck√
k2 + m2c2

~2

(12)

As we can see, the phase velocity can definitely be greater than c, while the group velocity should not ever
be greater than c. It makes sense that the phase velocity can actually be greater than c because the phase
velocity is just the apparent speed at which the humps of wave appear to travel. So if you interfere two plane
waves propagating in opposite directions, but off by a fraction of a degree from being exactly opposite, the
interference pattern will produce humps that propagate faster than the speed of light. However, the waves
themselves are not travelling faster than light. It is a good thing that we have that the group velocity must
always be less than or equal to c, however, since it is the group velocity which corresponds to the information
speed. Thus, in order to not violate special relativity, the motion of the wave group, must be less than or
equal to c.

b. 5 points

This question is asking us to take the limit as momentum gets very large (the ultra-relativistic limit). Since
we have our phase and group velocities in terms of k, not p, we can instead take the limit as k gets very
large (since they are just related by a constant). Thus, taking the limit as k →∞ and keeping mc

~ constant
(k >> mc

~ ), we get that:

vp =
c

k

√
k2 +

m2c2

~2
≈ c

k

√
k2 = c (13)

and

vg =
ck√

k2 + m2c2

~2

≈ ck√
k2

= c (14)

c. 5 points

In the non-relativistic limit, where p << c, we get that:

E = mc2(1 +
p2

m2c2
)1/2 ≈ mc2(1 +

p2

2m2c2
) = mc2 +

p2

2m
(15)

We can now make the substitutions as before for E and p to find our new dispersion relation:

ω =
mc2

~
+

~k2

2m
(16)

2



Our new vp and vk are:

vp =
ω

k
=
mc2

~k
+

~k
2m

(17)

and

vg =
dω

dk
=

~k
m

(18)

We see that while the group velocity does converge on our previous value of vg = ~k
m , the phase velocity

does not. It has an extra term that corresponds to the rest energy that was included in this value for the
energy and wasn’t for the previous calculation in Problem 23.

We can also do the ultra non-relativistic limit k << mc
~ , and we find that:

vp =
c

k

√
k2 +

m2c2

~2
≈ c

k

√
m2c2

~2
=
mc2

k~
(19)

and

vg =
ck√

k2 + m2c2

~2

≈ ck√
m2c2

~2

=
~k
m

(20)

This gives also gives us the same group velocity, but only the rest mass term from above and completely
ignores the regular term from Problem 23 (because it was assumed to be very small).

—————————————————————————————————————–
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