
Ph2a Online: Midterm Exam

Solutions

1 Gotham needs your Ph2a skills

Part (a)

As always, we guess a solution of the form x(t) = ert. Plugging this into the differential equation, we get

d2

dt

(
ert
)

+ γ
d

dt

(
ert
)

+ ω2
0e
rt = 0 (1)

r2ert + γrert + ω2
0e
rt = 0 (2)(

r2 + γr + ω2
0

)
ert = 0. (3)

The solutions to the characteristic equation r2 + γr + ω2
0 = 0 are

r =
−γ ±

√
γ2 − 4ω2

0

2
(4)

which results in two solutions to the differential equation, er1t and er2t. The general solution is any linear

combination of the two:

x(t) = C1e
r1t + C2e

r2t (5)

For light damping (γ < 2ω0),
√
γ2 − 4ω2

0 is imaginary, so r1 and r2 are complex. For heavy damping

(γ > 2ω0),
√
γ2 − 4ω2

0 is real, so r1 and r2 are real. For critical damping (γ = 2ω0), the r1 = r2 so the

general solution is a linear combination of ert and the special term tert:

x(t) = C1e
rt + C2te

rt (6)

Part (b)

For heavy damping, the motion is given by

x(t) = C1 exp

(
−γ −

√
γ2 − 4ω2

0

2
t

)
+ C2 exp

(
−γ +

√
γ2 − 4ω2

0

2
t

)
. (7)

By matching this with equation (3) in the problem, we have

µ1 =
γ +

√
γ2 − 4ω2

0

2
(8)

µ2 =
γ −

√
γ2 − 4ω2

0

2
. (9)

As specified in the problem, we have chosen the variables such that −µ1 is more negative than −µ2, so

µ1 > µ2.
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Since µ1 > µ2, the term C1 exp (−µ1t) decays faster and becomes negligible for t → ∞, and then the

solution becomes proportional to exp (−µ2t).

Part (c)

For critical damping, the motion is given by

x(t) = C1 exp (−ω0t) + C2t exp (−ω0t) . (10)

For t→∞, this solution is proportional to exp (−ω0t).

In the heavy and critical damping cases, the mass never actually reaches the origin, since the decay

is asymptotic; we would like to prove that eventually, the critically damped mass will be closer to the

origin than a heavily damped mass with the same initial conditions. This means as t → ∞, we have

exp (−ω0t) < exp(−µ2t), which is true because

γ > 2ω0 (11)

4ω0γ > 8ω2
0 (12)

−4ω2
0 > −4ω0γ + 4ω2

0 (13)

γ2 − 4ω2
0 > γ2 − 4ω0γ + 4ω2

0 (14)

γ2 − 4ω2
0 > (γ − 2ω0)2 (15)√

γ2 − 4ω2
0 > γ − 2ω0 (16)

w0 >
γ −

√
γ2 − 4ω2

0

2
(17)

w0 > µ2 (18)

The square root operation from (15) to (16) is permissible because γ − 2ω0 is positive.

Part (d)

For light damping, define iα =
√
γ2 − 4ω2

0 , where α is a real number. The motion is given by

x(t) = C1 exp

(
−γ

2
− iα

2

)
+ C2 exp

(
−γ

2
+
iα

2

)
(19)

= exp
(
−γ

2

)[
C1 exp

(
− iα

2

)
+ C2 exp

(
iα

2

)]
. (20)

We recognize this expression as a sinusoid multiplied by a decaying exponential envelope. In light damping,

the mass will reach the origin but repeatedly overshoot it; we characterize the speed at which the mass settles

to the origin by the speed that its amplitude decays, i.e. we look at the exponential factor exp(−γ/2).

Since γ < 2ω0 for light damping, γ/2 < ω0. Therefore, as t→∞, we have exp(−ω0t) < exp(−γ/2).

2 Let’s damp together!

(a) We are given the force equation for mass 1:

m1ẍ1 +
m1g

`
x1 + k(x1 − x2) +m1γẋ1 = 0. (21)
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The other force equation is:

m2ẍ2 +
m2g

`
x1 + k(x1 − x2) +m1γẋ1 = 0. (22)

Then (dividing these equations first by m1 and m2) matrix D is:

D =

(
d2t + g

` + k
m1

+ γ1dt − k
m1

− k
m2

d2t + g
` + k

m2
+ γ2dt

)
. (23)

(b) Now we try a solution of the form:

x(t) = Aeiωt, where A =

(
A1

A2

)
. (24)

Substituting in to the differential equation Dx = 0 gives:(
−ω2 + g

` + k
m1

+ iγ1ω − k
m1

− k
m2

−ω2 + g
` + k

m2
+ iγ2ω

)(
A1

A2

)
= 0. (25)

Note tht this is no longer either a real nor a symmetric matrix. But plunge ahead.

(c) What is the condition on the matrix you found in part (b), such that there is a non-trivial solution for

A (i.e., A 6= 0)? Note that if we have a matrix equation Mx = 0, and if M has an inverse M−1, then

we could multiply by M−1 and find:

x = M−1Mx = 0. (26)

Therefore, for x to have a non-trivial solution, M must be singular, detM = 0.

Thus, detD = 0, and we obtain(
−ω2 +

g

`
+

k

m1
+ iγ1ω

)(
−ω2 +

g

`
+

k

m2
+ iγ2ω

)
−
(
k

m1

)(
k

m2

)
= 0. (27)

(d) Consider here a subcase, with additional symmetry. Suppose m1 = m2 ≡ m and γ1 = γ2 ≡ γ. We have

now (
−ω2 +

g

`
+
k

m
+ iγω

)(
−ω2 +

g

`
+
k

m
+ iγω

)
−
(
k

m

)2

= 0. (28)

for ω. This is much easier, giving the quadratic pair of equations

−ω2 +
g

`
+
k

m
+ iγω = ± k

m
. (29)

Solving these two quadratic equations, and using

ω2
1 = g/` and ω2

2 = g/`+ 2k/m, (30)

we obtain the four solutions for ω:

ω′1± = i
γ

2
±
√
ω2
1 −

(γ
2

)2
ω′2± = i

γ

2
±
√
ω2
2 −

(γ
2

)2 (31)
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Express your answer in terms of the eigenfrequencies ω1 and ω2 of the undamped coupled pendulum

that we determined in class. There should be four solutions in all.

(e) Noting that the only addition to the problem without damping is a symmetric damping on both masses,

the normal coordinates still work (the only difference is that now the motion is damped), the general

solution for the motion is thus:

x = e−γt/2

{
B cos

[√
ω2
1 −

(γ
2

)2
t+ φ1

](
1

1

)
+ C cos

[√
ω2
2 −

(γ
2

)2
t+ φ2

](
1

−1

)}
. (32)

The four integration constants are B, C, φ1, φ2.

(f) At t = 0 we have the initial conditions:

x(0) =

(
0

0

)
, ẋ(0) =

(
v

0

)
. (33)

The initial condition on the position, x(0) = 0 is satisfied by letting φ1 = φ2 = ±π/2. Thus, we may

write:

x(t) = e−γt/2

{
B sin

[√
ω2
1 −

(γ
2

)2
t

](
1

1

)
+ C sin

[√
ω2
2 −

(γ
2

)2
t

](
1

−1

)}
. (34)

We differentiate to get the velocity:

ẋ(t) = −γ
2
x(t) + e−γt/2

{
Bα cosαt

(
1

1

)
+ Cβ cosβt

(
1

−1

)}
, (35)

where we have for convenience defined

α ≡
√
ω2
1 −

(γ
2

)2
β ≡

√
ω2
2 −

(γ
2

)2
. (36)

Then, at t = 0, we have

ẋ(0) =

(
v

0

)
= Bα

(
1

1

)
+ Cβ

(
1

−1

)
. (37)

Therefore,

B =
v

2α
and C =

v

2β
. (38)

Then the solution for x(t) satisfying the boundary conditions is:

x(t) =
v

2
e−γt/2


sin

[√
ω2
1 −

(
γ
2

)2
t

]
√
ω2
1 −

(
γ
2

)2
(

1

1

)
+

sin

[√
ω2
2 −

(
γ
2

)2
t

]
√
ω2
2 −

(
γ
2

)2
(

1

−1

) . (39)

3 Sports Station, Weather Station

a)

We are given an LRC circuit with the signal from a radio station acting as an AC power source. By

Kirchhoff’s Loop Rule, and using the voltage relations for individual components VR = IR, VL = −LdIdt ,
VC = q

C , we can sum the voltages to find q
C +LdIdt +RI = ε0 cos(ωt), where ε0 is the amplitude of the signal

and ω = 2πf .
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We want an expression just for VC , so we can substitute VC = q
C and q̇ = I to get the differential equation

V + LCV̈ + RCV̇ = ε0 cos(ωt). Rearranging yields V̈ + γV̇ + ω2
0V = f0 cos(ωt), where γ = R

L , ω0 = 1√
LC

,

f0 = ε0
LC = ε0ω

2
0 .

If R is small, then we have an underdamped system. Referring to section 3.2.2 of the text and the light

damping solution eq. 2.8, we find the general solution to be V (t) = Be−
γ
2 t cos(ω1t + φ) + A cos(ωt − δ),

where ω1 =
√
ω2
0 − (γ2 )2, A =

ε0ω
2
0√

(ω2−ω2
0)

2+ω2γ2
, tan(δ) = ωγ

ω2
0−ω2 , B,φ some constants determined by initial

conditions. Notice this solution’s first term decays away and is derived from the solution to the light damping

case, while the second term is the long-term performance of the circuit after the decaying term dies out.

Thus for large t, the amplitude is just A, which is defined above.

b)

At large t, we just want to find the maximum of A with respect to C to determine the place of maximum

response. Looking at A =
ε0ω

2
0√

(ω2−ω2
0)

2+ω2γ2
, we can see that only ω0 depends on C. If we write x = ω2

0 = 1
LC ,

then we can maximize A2 with respect to x and deduce the optimal C from that.
d
dxA

2 = d
dx

ε20x
2

(ω2−x)2+ω2γ2 =
2ε20x((ω

2−x)2+ω2γ2)+2ε20x
2(ω2−x)

((ω2−x)2+ω2γ2)2 . Setting this equal to zero yields 2ε20x((ω2 −
x)2 + ω2γ2) + 2ε20x

2(ω2 − x) = 0 or ω4 − ω2x+ ω2γ2 = 0 or x = ω2 + γ2. Then 1
LC = ω2 + γ2.

For small R, we also have small γ, which would indicate 1
ω2+γ2 ≈ 1

ω2 = LC. Then C ≈ 1
Lω2 is the optimal

value of C for maximum response. Note our approximation that ω2 + γ2 ≈ ω2 = 1
LC implies ω ≈ ω0 when

ω0 is set at the maximum response.

c)

Since we’re operating at maximum response, we can make the approximation that ω0,max ≈ ω. The

maximal amplitude, then, is ε0ω
γ , which is found just by plugging in our approximation to the formula

from part a for A. Then we want to find what frequency ω0 such that the amplitude at this frequency is

αAmax = αε0ω
γ . Using our expression for A, we can write

ε0ω
2
0√

(ω2−ω2
0)

2+ω2γ2
= αε0ω

γ .

Now we’ll square both sides and simplify to get γ2ω4
0 = α2ω2((ω2 − ω2

0)2 + ω2γ2) or (ω2 − ω2
0)2 =

1
α2

ω4
0γ

2

ω2 − ω2γ2 = ( 1
α2 (ω0

ω )4 − 1)ω2γ2. We now recognize that the quality factor Q is proportional to R−1,

and so since we have small R we have high Q, and thus this peak is tight. Then we can approximate ω0

ω ≈ 1.

Thus we have (ω2 − ω2
0)2 ≈ ( 1

α2 − 1)ω2γ2 or ω2 − ω2
0 ≈ ±

√
1
α2 − 1ωγ.

Then we can solve for ω0 and we get ω0 ≈
√
ω2 ±

√
1
α2 − 1ωγ = ω

√
1±

√
1
α2 − 1 γω . But we know γ is

small, so we can approximate the outer square root. Then ω0 ≈ ω(1± 1
2

√
1
α2 − 1 γω ). Since we started at ω,

then ∆ω0 ≈ γ
√

1
α2 − 1 ≈ ω

Q

√
1
α2 − 1, and this is the change in ω0 required to decrease the amplitude by a

factor of α.

(d)

Given the existence of a boring weather station with a broadcasting signal frequency f ′ = 1.002f with the

same amplitude ε0 s the sports station, we can compute the voltage across the capacitor as a function of

time via a second-order ODE that takes on a similar form as the one used in part (a):

V̈ + γV̇ + ω2
0V = f0 cosωt+ f ′ cos(ω′t+ θ) (40)

where ω′ = 2πf ′, γ = R
L , ω0 = 1√

LC
, f0 = ε0

LC = ε0ω
2
0 and we use linear theory for the approximation.

Note the familiar form of this ODE. We can solve it using our previous knowledge of the general form

of such an ODE and yield the following solution (Similar process of deriving the general form was used in

part(a) and also in the derivation of eq. 2.8.). The solution to the ODE takes the following form once we
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continue to use the solution derived in part(a) and consider the additional source term in the ODE:

V (t) = Ce−γt/2 cos(ω′t+ φ) +A cos(ωt− δ) +A′ cos(ω′t+ θ − δ′) (41)

where we have

A′ =
f0√

(ω′2 − ω2
0) + ω′2γ2

(42)

tan δ′ =
ω′γ

ω2
0 − ω′2

. (43)

We can similarly analyze the solution by considering that the first term decays away and the rest is simply

derived from the light damping case, while the second and third term shows how the RLC circuit behaves

even after the first term vanishes at large t.

(e)

We will start off by considering what quality factor we need for the noise to be at most 1% of the signal

using our results form part(c):

∆ω0 ≈
ω

2Q

√
1

α2
− 1 (44)

This will naturally lead to the following calculations of the quality factor needed for this case:

∆ω0

2
= ω′ − ω (45)

ω

2Q

√
1

0.012
− 1 = 0.002ω (46)

⇒ Q =
99

0.004
(47)

≈ 25000 (48)

Now, we know what Q value we need, we can now shift our focus onto the RLC circuit provided:

Q =
ω0

γ
(49)

=
1

R

√
L

C
(50)

=
Lω

R
(51)

Therefore, we have R ≤ Lω
Q ≈

Lω
25000 as desired.

—————————————————————————————————————–
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