
Physics 2a
Fall 2019

Problem Set 2 SOLUTIONS

Problem 6. [10 points]

We will make liberal use of the small angle approximation here. When examin-
ing the system, it is important to note that the force in the direction tangent to
the curve is not actually the same as the restoring force providing the oscilla-
tion. The restoring force points directly at the origin, which is the point we’re
restoring to, but the tangential force does not point at any specific location but
changes as we move along the curve. However, since we are using small angles
here, we can approximate the restoring force as the tangential force, and thus
consider only the component of gravitational force pointing tangentially. The
force of gravity is given by:

F “ ´mg. (1)

and the tangent angle is given by:

φ “ arctanp
dy

dx
q, (2)

the derivative gives the slope, and the arctan of the slope is the angle relative
to horizontal. Then since we only want the force in the direction of the tangent,
we take the force to be:

F “ ´mg sinpφq “ ´mg sinparctanp
dy

dx
qq. (3)

Now we take dy
dx “ sinhpxa q. Then by drawing a triangle, we find:

sinparctanp
dy

dx
qq “

sinhpxa q
b

1` sinh2
pxa q

“
sinhpxa q

coshpxa q
“ tanhp

x

a
q (4)

and
F “ ´mg tanhp

x

a
q. (5)

Now we use the small angle approximation to approximate tanh. We find that:

tanhp
x

a
q «

x

a
(6)

by a first order Taylor approximation for tanh. So now we have

F “
´mgx

a
(7)

which looks suspiciously like F “ ´kx with k “ mg
a .
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Then we know for a SHO that

ω0 “

c

k

m
“

c

mg

ma
“

c

g

a
. (8)

It is also possible to solve this with forces directly at the origin, using com-
ponents of both gravity and the normal force, or using a full energy approach
E “ K ` U and differentiating this to get the equation of motion (which you
can learn in Ph 106a).

Problem 7. [10 points]
We know the pendulums are lightly damped, and therefore the equation of
motion for each pendulum is

xptq “ Ae
´γt
2 cospωtq, (9)

where A is the initial amplitude, γ “ b
m with b the damping coefficient, and

ω2 “
g
l with l the length.

Note that the damping coefficient is the same for both systems because we are
given that the geometries are identical and the damping is only dependent on
the shape of the bob and the medium in which the bob is swinging.
Now we know that we are only looking at the decay of the amplitude, so we can
assume the cosine term to be 1 since that is its maximum. Thus the amplitude:

Aptq “ Ae
´γt
2 . (10)

We also want to solve for the time at which

Apt 1
2
q “

A

2
, (11)

because that is half the amplitude. So our equation to solve is

1

2
“ e

´γt 1
2

2 . (12)

For the first pendulum, we plug in t 1
2
“ tA “ 100s and γ “ b

mA
based on the

values given in the problem to find

1

2
“ e

´btA
2mA , (13)

and for the second we plug in tB “ 1000s to find:

1

2
“ e

´btB
2mB . (14)

Thus,

e
´btA
2mA “ e

´btB
2mB (15)
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or
´btA
2mA

“
´btB
2mB

. (16)

Finally,

mB “ mA
tB
tA
“ 9kg ˆ

1000s

100s
“ 90kg. (17)

Problem 8. [10 points]

(a) We know that Q “ ω0

γ in general and that at critical damping γ “ 2ω0.

Then Q “ ω0

2ω0
“ 1

2 .

(b) We know the equation of motion for a critically damped harmonic oscillator
is

xptq “ pc1 ` c2tqe
´ω0t. (18)

Then we want to find the maximum velocity, and we are given a velocity-related
initial condition, so we should get vptq. By taking the derivative, we find

vptq “ ´ω0c1e
´ω0t ´ ω0c2te

´ω0t ` c2e
´ω0t. (19)

We are given vp0q “ 0 so
0 “ ´ω0c1 ` c2, (20)

so
c2 “ ω0c1, (21)

which means

vptq “ p´ω0c1 ´ ω
2
0c1t` ω0c1qe

´ω0t “ ´ω2
0c1te

´ω0t. (22)

Now let’s find the maximum by taking the derivative:

aptq “ pω3
0c1t´ ω

2
0c1qe

´ω0t. (23)

Set this equal to zero so

0 “ pω3
0c1t´ ω

2
0c1qe

´ω0t “ pω0t´ 1qe´ω0t, (24)

which means
0 “ ω0t´ 1, (25)

so

t “
1

ω0
. (26)

We are given

ω0 “ 0.5
rad

s
, (27)

so
t “ 2s. (28)
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Note that here the speed is maximized, so the acceleration is zero and so is the
net force. So solving

´kx “ b
dx

dt
(29)

will work too, with b the damping coefficient.

Problem 9. [10 points]

(a) We’ll first obtain the differential equation to be used in our circuit. By
Kirchhoff’s Loop Rule,

´V ` IR` L
dI

dt
`
q

C
“ 0. (30)

If we differentiate with respect to t, we obtain:

L:I `R 9I `
1

C
I “ 0 (31)

or
:I `

R

L
9I `

1

LC
I “ 0. (32)

Using the characteristic polynomial, we obtain two roots:

r1 “
´R

2L
`

c

R2

4L2
´

1

LC
(33)

and

r2 “
´R

2L
´

c

R2

4L2
´

1

LC
. (34)

Please note r1 and r2 are both negative, and thus er1 and er2 will be decaying
exponentials.
Now we can figure out the type of damping based on the discriminant. Evaluate:

R2

4L2
´

1

LC
“

5002

4 ˚ 10´4
´

1

10´8
“ 6.25 ˚ 108 ´ 108 ą 0. (35)

Since the discriminant is positive, this is a case of heavy damping.
Also note that the discriminant being positive is equivalent to γ ą 2ω0.

(b) Now we will use our roots r1 and r2 to obtain a solution to the differential
equation. The general solution is

Iptq “ Aer1t `Ber2t. (36)

We need some initial conditions to solve for A and B. When the switch is closed,
the inductor resists any current change, and thus the voltage drop is exclusively
over the inductor. Then the initial current

Ip0q “ 0. (37)
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We also notice that the voltage across the inductor is V , so since

V “ L 9I, (38)

9Ip0q “
V

L
. (39)

So let’s use the first initial condition. Ip0q “ A`B “ 0 so B “ ´A. Then

Iptq “ Aper1t ´ er2tq, (40)

so
9Iptq “ Apr1e

r1t ´ r2e
r2tq. (41)

Using our second condition, we find

9Ip0q “ Apr1 ´ r2q “
V

L
(42)

so

A “
V

Lpr1 ´ r2q
(43)

and

B “
´V

Lpr1 ´ r2q
. (44)

Thus, we have
Iptq “ Aer1t `Ber2t (45)

with A and B as written above, and

qptq “

ż t

0

Iptq “
A

r1
per1t ´ 1q `

B

r2
per2t ´ 1q. (46)

Therefore,

Vcptq “
qptq

C
“

V

LCpr1 ´ r2q
p

1

r1
per1t ´ 1q ´

1

r2
per2t ´ 1qq. (47)

As a check, we can evaluate

Vcp0q “
V

LCpr1 ´ r2
p0´ 0q “ 0 (48)

and

Vcp8q “
V

LCpr1 ´ r2q
p
´1

r1
´
´1

r2
q

“
V

LCpr1 ´ r2q

r1 ´ r2
r1r2

“
V

LCr1r2

“
V

LCp R
2

4L2 ´
R2

4L2 `
1
LC q

“ V.

(49)
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These edge conditions are as expected.

The other way to do this problem is to solve the inhomogeneous differential
equation IR ` LdIdt `

q
C “ V or :qptq ` R

L 9qptq ` 1
LC qptq “

V
L . We can use

the same method as above to solve the homogeneous version, giving us the
same roots r1 and r2, but we also must add a particular solution. Here it is
convenient to note if we choose qptq “ CV we find :q “ 0, 9q “ 0, and thus
are left with V C

LC “ V
L which is clearly true. Then we simply must write out

our homogeneous solution qptq “ Aer1t ` Ber2t ` V C and solve using initial
conditions for qp0q and 9qp0q. Conveniently, the charge on the capacitor is zero
at the start, and the initial current is zero by the logic above, so qp0q “ 9qp0q “ 0.
Thus we find A ` B ` V C “ 0 and r1A ` r2B “ 0, so B “ ´V C ´ A, and
r1A ´ r2A “ r2V C or A “ r2V C

r1´r2
. Then B “ ´r1V C

r1´r2
. This yields an equation

qptq “ V C
r1´r2

pr2e
r1t´r1e

r2t`r1´r2q “
V C
r1´r2

pr2pe
r1t´1q´r1pe

r2t´1qq. Recall

from above r1r2 “
1
LC and so we’ll divide the exponential terms and multiply the

leading coefficient by this. This gives qptq “ V
Lpr1´r2q

p 1
r1
per1t´1q´ 1

r2
per2t´1qq

so Vcptq “
V

LCpr1´r2q
p 1
r1
per1t ´ 1q ´ 1

r2
per2t ´ 1qq, which is identical to our first

solution.
Problem 10. [10 points]

We have the same solution as in question 9, but now r1 and r2 are complex.
Let’s write

α “
R

2L
(50)

and

ω2 “
1

LC
´

R2

4L2
(51)

so that
r1 “ ´α` iω (52)

and
r2 “ ´α´ iω. (53)

Then our general solution is

Iptq “ e´αtpAsinpωtq `Bcospωtqq. (54)

Using our initial conditions from before yields

Ip0q “ 0 “ B (55)

and
9Iptq “ ´αe´αtAsinpωtq ` ωe´αtAcospωtq, (56)

so
9Ip0q “

V

L
“ ωA, (57)

6



so

A “
V

ωL
. (58)

Then our solution is

Iptq “ e´αtp
V

ωL
sinpωtqq. (59)

We know P “ I2R so we can just plug in to get

P ptq “ Re´2αtp
V 2

ω2L2
sin2pωtqq. (60)

1 Comments

In general this was a well-done set. Problems 4 and 5 were particularly mathy,
and people worked through them well and used the correct methods.
Problem 6: The only major problem here is that some people wrote ω in terms
of x, and you can’t write a constant in terms of a variable. I’d also like to note
that the solution is identical to a pendulum of length a. This means the catenary
should approximate a circle for small angles, and indeed it does (graph it)! The
circle approximation is not nearly as good as the parabolic approximation given
by a second order Taylor expansion around the minimum, but it is cool to see
the power of the small angle approximation.
Problem 7: No real issues here.
Problem 8: No real issues here.
Problem 9: The really common errors were just algebra errors.
Problem 10: A common error was to use equation 2.28 from the book. This
equation is derived from an RLC circuit without a DC voltage source, so it’s a
different system. The book’s system has no battery and also has a charge on
the capacitor initially. If you plug in the initial charge q0 on the capacitor, you
just get 0 in this system.
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