
Ph2a Online @ Caltech Homework-3 Solutions
Vibrations and Waves
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Problem 11 [10 points]

(a) 3 points

There are two different possible outcomes. If ´kx0 ă µsm, then the mass will not move since the static
frictional force prevents the motion. If ´kx0 ą µsm, then the mass will begin to oscillate back and forth,
each time the amplitude of the oscillation will shrink because of the frictional force.

• -1 point if no mention of the possibility of no motion µsm ą

• -1 point if no mention of oscillations, but includes frictional effect

• -1 point if no description of movement at all

(b) 3 points

The motion should stop in finite time, because the magnitude of the frictional force is not dependent on
velocity or position and will thus not shrink. However, the magnitude of the restoring force is shrinking,
so eventually the restoring force will be weaker than the frictional force which will cause the mass to cease
motion. This could occur at either one of the turning points due to zero velocity - static friction or while
it’s moving due to kinetic friction. However, since the µs ą µk, it will most likely stop at one of the turning
points. This question can also be answered in terms of energy. Since the system begins with finite energy,
and friction dissipates a constant amount each oscillation, it will clearly run out of energy in a finite time.
The stopping condition in this case is not having enough energy for friction to be able to dissipate to complete
the oscillation.

• -1 point if no mention of stopping condition

• -0.5 if not full explanation why it stops

• -2 points if wrong conclusion

(c) 4 points

Since the direction of the frictional will always appose the motion of the mass, we need to have two different
equations of motion to describe the mass going in either direction. Thus, the two differential equations
describing motion to the left and to the right are:

:x` µk ` ω
2
0x “ 0 9x ą 0 (1)

:x´ µk ` ω
2
0x “ 0 9x ă 0 (2)

We can ansatz that the inhomogeneous solutions for each direction will be xptq “ α
ω2

0
and xptq “ ´ α

ω2
0
.

Plugging these in, it is clear that these work. We will then also add the homogeneous solution xptq “
Ccospω0t ` φq. A concise way of writing this can be done using the Heaviside or step function, as shown
below:

xptq “

#

C cos pω0t` φq ´ µkω
2
0 9x ą 0,

C cos pω0t` φq ` µkω
2
0 9x ă 0

(3)

This doesn’t make perfect sense, since this does not account for what occurs at the turning points. Since
the velocity is zero at those points, static frictional force should enter the equations. There is also a jump in
position at the turning points as well due to the opposite signs on the friction terms. Finally, If we assume a
constant C, we never see the decaying amplitude which we know must be occurring because of the friction.
Hence, these equations are only valid from one turning point to the next and must be solved recursively.

• -2 points if forgot one of the directions on EOM

• -3 points if wrong EOM
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• -1 point if forgot homogeneous solution

• -0.5 points if use µs instead of µk

• -2 points if doesn’t explain whether the answer makes sense

• -0 points if didn’t describe what happened at 9x “ 0

Problem 12 [8 points]

The hard part of this problem is the difficult algebra to get to a very satisfying answer. Given that P ptq “

RpCV
ω2

0

ω q
2e´γt sin2 ωt where ω2 “ ω2

0 ´
γ2

4 , ω
2
0 “

1
LC and γ “ R

L , we know that to find the total energy
dissipated from the system, we must integrate P(t) from t = 0 to infinity.

Etot “

ż 8

0

P ptqdt “

ż 8

0

RpCV
ω2
0

ω
q2e´γtsin2pωtqdt

“
R

2
pCV

ω2
0

ω
q2

ż 8

0

e´γtp1´ cosp2ωtqqdt

“
R

2
pCV

ω2
0

ω
q2

ż 8

0

e´γtp1´
1

2
pe2iωt ` e´2iωtqqdt

“ ´
R

2
pCV

ω2
0

ω
q2e´γtpγ `

1

2
pp´γ ` 2iωqe2iωt ´ pγ ` 2iωqe´2iωtq

∣∣∣∣8
0

“ ´
R

2
pCV

ω2
0

ω
q2p0´

1

γ
´

1

2
p

1

p´γ ` iωq
´

1

pγ ` iωq
qq

“ ´
R

2
pCV

ω2
0

ω
q2

4ω2

γ3 ` 4γω2
“ ´RC2V 2 2ω4

0

γ3 ` 4γω2
“ CV 2 2ω2

0

γ2 ` 4ω2
“
CV 2

2
(4)

We notice that we get the capacitor energy as the answer. Thus, the total energy dissipated is used to move
the charge (CV) on the capacitor against the resistor.

• -1 for not simplifying fully/ not plugging in ω0, ω, orγ

• -1 for small error in algebra

• -2 for small conceptual error

• -4 for wrong definition of total energy/wrong bounds

Problem 13 [5 points]
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Using the shifted definition of tan δ that is more natural in this question, we get that the oscillator phase

frequency response is tan δ “ γω
ω2

0´ω
2 . We found this using sin δ “ γωA

F0{m
and cos δ “

pω2
0´ω

2
qA

F0{m
.

• -1 points if equations aren’t given

• -1 if graphs are wrong but equations are right

• -3 if graphs and equations are wrong

• -0 if graphs do not have shifted definition of arctan

Problem 14 [7 points]

(a) 4 points

We first must find the equation of motion of the system and then we can get those values from that equation.
We will solve from Q “ CV , V “ IR and V “ dIL

dt to find the EOM in terms of V.

Q “ CV Ñ IC “
dQ

dt
Ñ IC “ C

dV

dt
Ñ

dIC
dt

“ C
d2V

dt2
(5)

V “ IRÑ IR “ C
V

R
Ñ

dIR
dt

“ C
dV

dt
(6)

dIL
dt

“
V

L
(7)

From the junction rule, we know I0 cosωt “ IC ` IL ` IR Ñ ´ωI0 sinωt “ dIC
dt `

dIL
dt `

dIR
dt . From that, we

can get our equation of motion:

d2V

dt2
`

1

RC

dV

dt
`

1

LC
V “ ´

ω

C
I0 sinωt (8)

The coefficient of your V term will be the natural frequency ω0 squared: ω2
0 “

1
LC . We can also find Q by

the relationship Q “ ω0

γ “ R
b

C
L where γ “ 1

RC .

(b) 3 points

The long term behavior or the steady state solution of the voltage (which is the same across any of the
circuit elements due to them being in parallel), once the natural oscillations have died out due to damping
can be seen to be the inhomogenous solution of the differential equation for V(t) above and is given by,

Vsteadyptq “ V0pωq cos pωt´ δq, (9)

where δpωq is the appropriately defined steady state phase difference and the amplitude V0pωq is seen to
be (on the same lines as how we solved for the steady state solutions for driven oscillations),

V0pωq “
I0ω{C

a

pω2
0 ´ ω

2q2 ` γ2ω2
(10)

where as we solved in part (a), ω2
0 “

1
LC and γ “ 1

RC . Now at resonance, ω “ ω0, we can find the peak
voltage V0pω “ ω0q and it can easily be seen to be,

V0 “ I0R, (11)

which is precisely what it would be had the circuit had no capacitor or inductor! Indeed resonance is defined
by that frequency at which the circuit looks purely resistive. Said differently, as ew know at resonance, there
is maximum power transfer from the driving agent and since in RLC circuits, only the resistor can dissipate
power, hence the circuit works to behave resistively so as to maximize power transfer.

• -1 point each for wrong ω0 and Q

• -1 point for not deriving the correct ω0 and Q

• -1 incomplete answer for 4.2

• -1 if no comparison to circuit without L and C
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Common Issues

• Problem 11a: Many people forgot to mention that if µsm ą k|x0|, then the mass will not move.

• Problem 11b: Almost everyone got the stopping condition, but some people didn’t prove that it was
actually reachable. You should mention that the amplitude decreases with each oscillation, or that
energy is being dissipated at a continuous rate; therefore, there will come a time when the amplitude
has been reduced far enough to satisfy the static stopping condition.

• Problem 12: Many people forgot to plug in ω0, ω, and γ to simplify the equation.

• Problem 13: Many people forgot to write out the equation that they were plotting. If the software
showed the equation clearly, with the correct variable names, I did not count anything off.

• Problem 14a: Some people just stated what ω0 and γ were without doing the circuit calculation, but
then often used the wrong value of γ.

—————————————————————————————————————–
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